make.predictions.RdThis function takes a siamcat-class-object containing a model trained by train.model and performs predictions on a given test-set.
make.predictions(siamcat, siamcat.holdout = NULL,
normalize.holdout = TRUE, verbose = 1)object of class siamcat-class
optional, object of class siamcat-class on
which to make predictions, defaults to NULL
boolean, should the holdout features be normalized
with a frozen normalization (see normalize.features) using the
normalization parameters in siamcat?, defaults to TRUE
integer, control output: 0 for no output at all,
1 for only information about progress and success, 2 for
normal level of information and 3 for full debug information,
defaults to 1
object of class siamcat-class with the slot
pred_matrix filled
This functions uses the model in the model_list-slot of the
siamcat object to make predictions on a given test set. The test set
can either consist of the test instances in the cross-validation, saved in
the data_split-slot of the same siamcat object, or a
completely external feature set, given in the form of another
siamcat object (siamcat.holdout).
data(siamcat_example)
# Simple example
siamcat_example <- train.model(siamcat_example, method='lasso')
#> Trained lasso models successfully.
siamcat.pred <- make.predictions(siamcat_example)
#> Made predictions successfully.
# Predictions on a holdout-set
if (FALSE) pred.mat <- make.predictions(siamcat.trained, siamcat.holdout,
normalize.holdout=TRUE)